Description:
Researchers have long sought to understand what the brain does when we see an object, what two people have in common when they see the same object, and what a "seeing" machine would need to have in common with a human visual system. Recent neurobiological and computational advances in the study of vision have now brought us close to answering these and other questions about representation.
Expand description
In Representation and Recognition in Vision, Shimon Edelman bases a comprehensive approach to visual representation on the notion of correspondence between proximal (internal) and distal similarities in objects. This leads to a computationally feasible and formally veridical representation of distal objects that addresses the needs of shape categorization and can be used to derive models of perceived similarity.
Product notice
Returnable at the third party seller's discretion and may come without consumable supplements like access codes, CD's, or workbooks.

Please Wait